首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   22篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   4篇
  2013年   13篇
  2012年   13篇
  2011年   8篇
  2010年   10篇
  2009年   11篇
  2008年   6篇
  2007年   7篇
  2006年   12篇
  2005年   13篇
  2004年   6篇
  2003年   6篇
  2002年   13篇
  2001年   7篇
  2000年   11篇
  1999年   15篇
  1998年   7篇
  1997年   6篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1977年   10篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1971年   6篇
  1970年   3篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1955年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
71.
Autotaxin or NPP2 (nucleotide pyrophosphatase/phosphodiesterase 2) is a secreted lysophospholipase-D that promotes metastasis and tumor growth by its ability to generate lysophosphatidic acid. Considerable evidence suggests that inhibitors of NPP2 can be used as a novel therapy for the treatment of cancer. Although most attention is currently directed toward the development of inhibitors of the catalytic site, we have explored whether NPP2 can also be targeted through its non-catalytic nuclease-like domain. We demonstrate here that the catalytic and nuclease-like domains are covalently linked by an essential disulfide bridge between Cys413 and Cys805. Within the nuclease-like domain, residues 829–850 are involved in the secretion of NPP2, and Lys852 is required for the expression of catalytic activity. These data show that the nuclease-like domain is crucial for catalysis by NPP2 and is a possible target to generate inhibitors.NPP2 3 or autotaxin is a secreted lysophospholipase-D that acts in a paracrine or autocrine manner. The major substrate of NPP2 is lysophosphatidylcholine, which is converted into choline and lysophosphatidic acid. The latter promotes signaling through specific G-protein-coupled receptors that stimulate cell proliferation, differentiation, and motility (1). NPP2 functions in processes as diverse as the homing of lymphocytes, blood vessel formation, and wound healing but also promotes tumorigenesis (26). The metastasis-enhancing properties of NPP2 have been attributed to its ability to promote the invasive properties of cancer cells and to stimulate angiogenesis. Importantly, NPP2 is highly expressed by various cancers including breast carcinoma (7), Hodgkin lymphoma (8), and glioblastoma multiforme (9), and this correlates with an increased metastasis and angiogenesis. Therefore, NPP2 is considered to be an attractive target for a novel anticancer therapy, in particular because it acts extracellularly, and interfering drugs thus do not need to be cell-permeable (10).NPP2 is one of the seven mammalian members of the NPP-type family of ectophosphodiesterases, belonging to the superfamily of phospho-/sulfo-coordinating metalloenzymes (11). These enzymes all have a structurally related catalytic domain and the same catalytic mechanism but show a different substrate specificity. For example, NPP1 only recognizes nucleotide substrates, whereas NPP2 preferentially hydrolyzes lysophospholipids. Interestingly, NPP1–3 share a C-terminal non-catalytic domain, commonly referred to as the nuclease-like domain (NLD) (12). The latter is related to DNA/RNA-nonspecific endonucleases but lacks key residues that are necessary for activity and is therefore believed to have a structural or regulatory role. It is not known whether the NLD acts as a positive or negative regulator of NPP activity, but swapping experiments of the NLD between NPP1 and NPP2 suggested that it harbors isoform-specific determinants for catalysis (13).To examine the therapeutic potential of NPP2, in particular for the treatment of cancer, a number of small molecule inhibitors have been developed (14, 15). However, these inhibitors are all directed against the catalytic site and may therefore also interfere with other phospho-/sulfo-coordinating metalloenzymes. We report here that the NLD is essential for the expression of catalytic activity and can be used as an alternative target to inhibit NPP2.  相似文献   
72.
A straightforward analytical method for determination of 3-benzylidene camphor (3-BC) in rat adipose tissue, brain, liver, muscle, plasma and testis following topical application was developed and validated. Three exposure levels (60, 180 and 540 mg kg(-1) day(-1)) were tested for 65 days in male Sprague-Dawley rats (24 days postnatal). Sample preparation involving homogenization and n-heptane or methanol extraction of the tissue was applied before injection into the LC-ESI-MS-MS system. The response was linear from 2 to 100 microg l(-1) for the qualifier and the quantifier MRM transitions (R(2) (quantifier) > 0.994). Detection limit of the method corresponded to 0.005 microg g(-1) tissue and 12.5 microg l(-1) plasma, respectively. Recovery was determined for all tissues (adipose tissue: 40%; all other tissues: 80-100%) at three individual levels. 3-(4-Methyl benzylidene camphor) (4-MBC) was used throughout the study as internal standard. 3-Benzylidene camphor was detected in all tissues at all exposure levels at concentrations between 0.05 microg g(-1) (liver) and 36 microg g(-1) (adipose tissue) and in plasma at 16-89 microg l(-1). The method allowed for the quantification of 3-benzylidene camphor in all tested tissues following topical application. Furthermore, it was shown that 3-benzylidene camphor can be found in various tissues in the rat following topical application. These findings may suggest that following use of 3-benzylidene camphor containing sunscreen, similar disposition and distribution may occur in humans.  相似文献   
73.
It is reasonably well understood how the initiation of translation is controlled by reversible phosphorylation of the eukaryotic translation initiation factors eIF2alpha, eIF2Bepsilon and eIF4E. Other initiation factors, including eIF2beta, are also established phosphoproteins but the physiological impact of their phosphorylation is not known. Using a sequence homology search we found that the central region of eIF2beta contains a putative PP1-(protein phosphatase-1) binding RVxF-motif. The predicted eIF2beta-PP1 interaction was confirmed by PP1 binding and co-immunoprecipitation assays on cell lysates as well as with the purified components. Site-directed mutagenesis showed that eIF2beta contains, in addition to an RVxF-motif, at least one other PP1-binding site in its C-terminal half. eIF2beta functioned as an inhibitor for the dephosphorylation of glycogen phosphorylase and Ser51 of eIF2alpha by PP1, but did not affect the dephosphorylation of Ser464 of eIF2Bepsilon by this phosphatase. Strikingly, eIF2beta emerged as an activator of its own dephosphorylation (Ser2, Ser67, Ser218) by associated PP1, since the substrate quality of eIF2beta was decreased by the mere mutation of its RVxF-motif. These results make eIF2beta an attractive candidate substrate for associated PP1 in vivo. The overexpression of wild-type eIF2beta or eIF2beta with a mutated RVxF-motif did not differentially affect the rate of translation, indicating that the binding of PP1 is not rate-limiting for translation under basal conditions.  相似文献   
74.
75.
76.
NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G(2)/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g. by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G(2)/M transition. However, the FHA domain blocked beta-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.  相似文献   
77.
When stimulated by glucose, the pancreatic beta-cell displays large oscillations of intracellular free Ca2+ concentration ([Ca2+]i). To control [Ca2+]i, the beta-cell must be equipped with potent mechanisms for Ca2+ extrusion. We studied the expression of the plasma membrane Ca(2+)-ATPases (PMCA) in three insulin secreting preparations (a pure beta-cell preparation, RINm5F cells and pancreatic islet cells), using reverse-transcribed PCR, RNase protection assay and Western blotting. The four main isoforms, PMCA1, PMCA2, PMCA3 and PMCA4 were expressed in the three preparations. Six alternative splice mRNA variants, characterized at splice sites A, B and C were detected in the three preparations (rPMCA1xb, 2yb, 2wb, 3za, 3zc, 4xb), plus two additional variants in pancreatic islet cells (PMCA4za, 1xkb). The latter variant corresponded to a novel variant of rat PMCA1 gene lacking the exon coding for the 10th transmembrane segment, at splice site B. At the mRNA and protein level, five variants predominated (1xb, 2wb, 3za, 3zc, 4xb), whilst one additional isoform (4za), predominated at the protein level only. This provides the first evidence for the presence of PMCA2 and PMCA3 isoforms at the protein level in non-neuronal tissue. Hence, the pancreatic beta-cell is equipped with multiple PMCA isoforms with possible differential regulation, providing a full range of PMCAs for [Ca2+]i regulation.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号